

Observing Application

Date : Aug, 27 2012 Proposal ID : VLA/12B-375 Legacy ID : AN157 PI : Thomas Nelson Type : Director's Discretionary Time - Target of Opportunity Category : Energetic Transients and Pulsars Total Time : 32.0

The E-Nova Project: Understanding Gamma-Ray Emission in Classical Novae

Abstract:

Novae are the most common stellar explosions, and key in understanding whether an accreting white dwarf can become a Type Ia supernovae. But major uncertainties remain regarding how the thermonuclear burning proceeds, how material from the core of the white dwarf is mixed into the envelope, and how the envelope is ejected. The long-term scientific aim of our E-Nova Project is to resolve these uncertainties. To accomplish this goal, we require multi-frequency radio monitoring of a diverse sample of novae throughout their radio rise and decay.

Adding to the diverse and surprising behavior of novae, the expectation that standard novae explosions should not produce detectable gamma-ray emission was recently turned on its head with Fermi detections of two classical novae this summer. Here we request 32 hours of VLA observations to provide critical insights into the source of the gamma rays, while tracing the detailed energetics and dynamics of the mass ejections themselves.

Authors:

Name	Institution	Email	Status
Laura Chomiuk	Harvard-Smithsonian Center for Astrophysics	lchomiuk@cfa.harvard.edu	
Thomas Nelson	University of Minnesota	tnelson@physics.umn.edu	
Jennifer Sokoloski	Columbia University	jeno@astro.columbia.edu	
Michael Rupen	National Radio Astronomy Observatory	mrupen@nrao.edu	
Jennifer Weston	Columbia University	jennifer@astro.columbia.edu	Graduating: 2015 Thesis: true
C. (Teddy) Cheung	Naval Research Laboratory	teddy@slac.stanford.edu	
Amy Mioduszewski	National Radio Astronomy Observatory	amiodusz@nrao.edu	
Bob Williams	Space Telescope Science Institute	wms@stsci.edu	
Nirupam Roy	National Radio Astronomy Observatory	nroy@aoc.nrao.edu	
Miriam Krauss	National Radio Astronomy Observatory	mkrauss@nrao.edu	
Mike Bode	Liverpool John Moores University	mfb@astro.livjm.ac.uk	
Koji Mukai	NASA/GSFC & UMBC	Koji.Mukai@nasa.gov	
Stewart Eyres	Central Lancashire, University of	spseyres@uclan.ac.uk	
Tim O'Brien	Manchester, University of (Jodrell Bank)	tob@jb.man.ac.uk	

Principal Investigator:	Thomas Nelson
Contact:	Laura Chomiuk
Telephone:	608 279 3620
Email:	lchomiuk@cfa.harvard.edu

Related proposals:

S4322, 12A-483

Joint:

Not a Joint Proposal

Observing type(s):

Continuum, Polarimetry, Single Pointing(s), Monitoring

VLA Resources

Name	Conf.	Frontend & Backend	Setup
Ки	Any	Ku Band 2 cm 12000 - 18000 MHz WIDAR OSRO, Full Polarization	Rest frequencies: 13500.0,17000.0 MHz Subband Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz Total Bandwidth: 2,048.00 MHz
Ка	Any	Ka Band 0.9 cm 26500 - 40000 MHz WIDAR OSRO, Full Polarization	Rest frequencies: 26500.0,36000.0 MHz Subband Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz Total Bandwidth: 2,048.00 MHz
L	Any	L Band 20 cm 1000 - 2000 MHz WIDAR OSRO, Full Polarization	Rest frequencies: 1250.0,1750.0 MHz Subband Bandwidth: 64.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 1000.0 kHz Total Bandwidth: 1,024.00 MHz
C	Any	C Band 6 cm 4000-8000 MHz WIDAR OSRO, Full Polarization	Rest frequencies: 4700.0,7400.0 MHz Subband Bandwidth: 128.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 2000.0 kHz Total Bandwidth: 2,048.00 MHz

Testing Resource Images

Sources:

Name Position	Velocity	Group
---------------	----------	-------