

Observing Application

Date : Jan, 24 2011 Proposal ID : VLA/10B-246

Legacy ID: AD637

PI: Jeremy Darling

Type: Director's Discretionary
Time - Exploratory Time

Category: Extragalactic Structure

Total Time: 4.0

Mapping the Water Masers in M31 for VLBA Proper Motion Studies

Abstract:

We have detected and confirmed five water maser complexes in the Andromeda Galaxy (M31) using the Green Bank Telescope. These masers will provide the high brightness temperature point sources needed for proper motion studies of Andromeda, enabling the measurement of its full three-dimensional velocity vector and its proper rotation, which is a geometric distance indicator. The motion of M31 is the keystone of Local Group dynamics and a gateway to the dark matter profiles of galaxies in general. Our GBT survey for water masers selected 206 luminous compact 24 micron-emitting regions in M31 and was sensitive enough to detect any maser useful for ~10 microarcsecond per year astrometry with the VLBA. But the 33 arcsec GBT beam does not provide sufficient localization of the masers for immediate VLBA observations. We therefore request 2 hours of Exploratory EVLA A-array time to localize and map these masers in order to begin proper motion monitoring with the VLBA.

Authors:

Name	Institution	Email	Status
Jeremy Darling	Colorado at Boulder, University of	jdarling@origins.colorado.edu	

Principal Investigator: Jeremy Darling
Contact: Jeremy Darling
Telephone: 303 492 4881

Email: jdarling@origins.colorado.edu

Related proposals:

GBT 10C-039

Joint:

Not a Joint Proposal

Observing type(s):

Spectroscopy, Single Pointing(s)

VLA Resources

Name	Conf.	Frontend & Backend	Setup
Water	A	MHz WIDAR OSRO2: 1 Subband/Dual polz	Rest frequencies: 22235.08 MHz Subband Bandwidth: 4.0 MHz No. of Channels: 64 Poln. products: 4.0 Channel Width: 62.5 kHz

Sources:

Name Po		osition Velocity		Velocity	Group	
	Coordinate System	Equatorial	Commention	Ontinal		
003918+402158	Equinox	J2000	Convention	Optical	Water Masers	
	Dight Assembles	00:39:18.0	Def France	Barycentric		
	Right Ascension	00:00:00.0	Ref. Frame			
	Declination	+40:21:58.0	Velocity	-565.00		
	Declination	00:00:00.0	velocity			
	Coordinate System	Equatorial	Commention	Optical		
	Equinox	J2000	Convention		Water Masers	
004404 : 404047	Dight Assembles	00:41:21.0	Def France	Damisaantiis		
004121+404947	Right Ascension	00:00:00.0	Ref. Frame	Barycentric		
	Daalla atlan	+40:49:47.0	Walaalia			
	Declination	00:00:00.0	Velocity	-530.00		
	Coordinate System	Equatorial	2 (1)	0.11		
	Equinox	J2000	Convention	Optical		
004040 444407	D. 1.4	00:43:43.0	n / -			
004343+411137	Right Ascension	00:00:00.0	Ref. Frame	Barycentric	Water Masers	
		+41:11:37.0				
	Declination	00:00:00.0	Velocity	-295.00		
	Coordinate System	Equatorial		Optical		
	Equinox	J2000	Convention			
	•	00:44:09.0	5 / 5	Barycentric		
004409+411856	Right Ascension	00:00:00.0	Ref. Frame		Water Masers	
	.	+41:18:56.0		-240		
	Declination	00:00:00.0	Velocity			
	Coordinate System	Equatorial	2 (1)	Optical		
	Equinox	J2000	Convention			
004400 : 445454	District Assessments	00:44:30.0	D-(F	Barycentric	10/-100 M-000	
004430+415154	Right Ascension	00:00:00.0	Ref. Frame		Water Masers	
	5	+41:51:54.0	W 1 1/2	100.00		
	Declination	00:00:00.0	Velocity	-120.00		
	Coordinate System	Equatorial	a .:	0 11 1		
3C48	Equinox	J2000	Convention	Optical		
		01:37:41.29	5 / 5	Barycentric		
	Right Ascension	00:00:00.0	Ref. Frame		Water Masers	
		+33:09:35.1		-300		
	Declination	00:00:00.0	Velocity			
0038+416	Coordinate System	Equatorial		Optical		
	Equinox	J2000	Convention			
		00:38:24.84		Barycentric		
	Right Ascension	00:00:00.0	Ref. Frame		Water Masers	
		+41:37:06.0		-300		
	Declination	00:00:00.0	Velocity			

Sessions:

Name	Session Time (hours)	Repeat	Separation	LST minimum	LST maximum	Elevation Minimum
Mapping	2.00	1	0 day	21:00:00	03:00:00	0
Mapping	2.00	1	0 day	21:00:00	03:00:00	0

Session Constraints:

Name	Constraints	Comments
Mapping		The noise requirement is for data spectrally smoothed to 156 kHz channels (see Justification text).
Mapping		The noise requirement is for data spectrally smoothed to 156 kHz channels (see Justification text).